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Outline

< Overview of software considerations for use 1n
safety applications

<+ Objective

< Introduce some of the concerns in using programmable
devices and some of the methods used to address them.
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< Nancy Leveson will argue that “software” cannot
fail, only hardware. Software 1s an abstract
concept executed by physical hardware.
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A stress-strength model can be used.

Instead of physical stress on a component, software 1s stressed by
demands placed on the constraints within the context of the system.

These constrains can be:
< physical, e.g. hardware failure,...

<+ logical, e.g. out of bounds data,...

< temporal, e.g. old data, mis-synchronized functions,...

It 1s a matter of how well the constraints are defined and how well
the system can handle excursions beyond the constraints.
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Errors introduced in the
behavioral phase will propagate
through to any type of system
implementation.

This is the source of the
majority of functional errors in a
W, system.
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Requirements

The most important document 1n safety systems is the
requirements document.

Requirements should include
< Context
< Scope and intended use
< Constraints
< Assumptions
< Desired behavior
< Timing requirements
< Exception handling
< Verification/Validation requirements
< Definition of inputs and expected outputs

© K Mahoney/S. Prior USPAS
D200 June, 2004



<+ Languages
+IEC61131-3 Defines PLC programming Languages
< Applications

< Software application development 1s left to “Good
Practice”

<+ A good start 1s in IEC 61508 and 61511

<+ IEC880 (Software for Computers in the Safety Systems
of Nuclear Power Stations) 1s a good reference
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Programming Languages

» Three Categories

< Fixed Program Language
< Application is unalterable
< Ex. Smart Transmitter
< Limited Variability Language

<+ Well defined functions may be programmed within a structured
framework

< Ex. Ladder Logic, Instruction List, Structured Text
< Full Variability Language
< General purpose programming language
<+ Ex. ADA, C, C++
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Safety Software Design

Really, it is high QA design.
Apply standards and good practice that reflect lessons learned from past
accidents. Includes things like checklists.

Make use of hazard analysis techniques to help avoid introduction of
systematic errors.
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Branches

<+ Every
decision
branch in a
logical
system
iIncreases the
complexity of g
the system
exponentially
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Software Analysis Techniques

¢ Software FMEA

¢ HAZOP

—Hazard and Operability analysis

—Qualitative

—Carried out on design, not a FMEA
¢ Fault/Event Trees

—Quantitative

—Only follows defined faults/events
¢ Formal Methods

—Rigorous but unwieldy
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IEC 61508 Part 3 Software

< Defines requirements for software practices based
on target SIL level.

< Includes appendices with recommended practice.

< Practice may be:

<+ HR Highly Recommended
*R Recommended

% - mute/no recommendation
<+ NR Not Recommended
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Recommendations from IEC
61508 Part 3-Software

- Technique/Measure Ref SIL1
1 Use of coding standard HR
2 No dynamic objects R

3a No dynamic variables -
3b Online checking of the installation -
of dynamic variables

4 Limited use of interrupts R

5 Limited use of pointers ——-
6 Limited use of recursion ——-
7 No unconditional jumps in programs R

in higher level languages

SIL2
HR
HR
R
R

A A0 4

SIL3
HR
HR
HR
HR

HR
HR
HR
HR

SIL4
HR
HR
HR
HR

HR
HR
HR
HR

Table B.1 — Design and coding standards
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Recommendations from IEC 61508 Part 3-Software

Technique/Measure Ref SIL1

1 Software module size limit

2 Information hiding/encapsulation
3 Parameter number limit

4 One entry/one exit point in
subroutines and functions

5 Fully defined interface
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From Table B.9 — Modular approach
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Hazard Miti

ation from Software Perspective

S avanon - 150
Do

Safe Design Precedence

Substitution

Simplification

Decoupling

Elimination of human errors

Reduction of hazardous materials or conditions Decreasing cost

HAZARD REDUCTION Increasing effectiveness

Design for controllability
Bammers

Lockins, Lockouls, Interlocks
Failure Minimization

Safety Factors and Margins

Redundancy

HAZARD CONTROL

Reducing exposure
Isolation and containment
Protection systems and fail-safe design

DAMAGE REDUCTION

N. Leveson
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Software Checking

A Hierarchy of Software Checking

3l
not detected

* Observe system axtarnally to provide indapandant view
* |Jse additional hardware or completely separate hardware.
* Dftan absarve both controlled system and contraller,

* Indapandent monitoring by process separate from thal baing checked.
* May check:
dala being passed betweaen modules

consistency of global data structures
expected timing of modules or procassas
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Code-Level Checks

not detected

Hardware Checks

N. Leveson

© K Mabhoney/S. Prior
2002-2004

* Can detect coding errors and implementalion errors,

* Use assertions: slatements (boolean exprassions on system state)
about expected state of module at diffarent points in execution or
about expected value of parametars passed to module,

e.g. range checks, stale checks, reasonablaness checks

* Used to detect hardware failures and individual instruction ermors.
&.g.. mamory protection viclation, divide by zero

* Checksums

& Often buill into hardware or checks included in operating system.
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Self-Checking Software (2)

Other Errors
Detected

Spec Read Chks Spec Read Chks
KNOWN NEWLY FOUND ADDED
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State Machine Design

State or state machine based design
Each state must be complete

Each state and transition in-to and out-of must be
deterministic, e.g. fail safe states.

Define “safe” states and “dangerous” states
Error handling for each condition/state/transition

Restricted Controlled
Search
Access Access
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McCabe Complexity

< e is number of edges
% nis number of states

Paths =e—n+2

[f-Then-Else
While-Do
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